
 XLISP: An Experimental Object-oriented Language

 Version 1.7

 March 12, 1986

 by
 David Michael Betz
 114 Davenport Ave.
 Manchester, NH 03103

 (603) 625-4691 (home)

 Copyright (c) 1986, by David Michael Betz
 All Rights Reserved
 Permission is granted for unrestricted non-commercial use

 XLISP TABLE OF CONTENTS Page 2

 Table of Contents

 TABLE OF CONTENTS 2

 INTRODUCTION 4

 A NOTE FROM THE AUTHOR 5

 XLISP COMMAND LOOP 6

 BREAK COMMAND LOOP 7

 DATA TYPES 8

 THE EVALUATOR 9

 LEXICAL CONVENTIONS 10

 READTABLES 11

 OBJECTS 12

 SYMBOLS 15

 EVALUATION FUNCTIONS 16

 SYMBOL FUNCTIONS 17

 PROPERTY LIST FUNCTIONS 19

 ARRAY FUNCTIONS 20

 LIST FUNCTIONS 21

 DESTRUCTIVE LIST FUNCTIONS 24

 PREDICATE FUNCTIONS 25

 CONTROL CONSTRUCTS 27

 LOOPING CONSTRUCTS 29

 THE PROGRAM FEATURE 30

 DEBUGGING AND ERROR HANDLING 31

 ARITHMETIC FUNCTIONS 32

 BITWISE LOGICAL FUNCTIONS 34

 RELATIONAL FUNCTIONS 35

 STRING FUNCTIONS 36

 XLISP TABLE OF CONTENTS Page 3

 INPUT/OUTPUT FUNCTIONS 37

 FILE I/O FUNCTIONS 38

 SYSTEM FUNCTIONS 39

 XLISP INTRODUCTION Page 4

 INTRODUCTION

 XLISP is an experimental programming language combining some of
 the features of LISP with an object-oriented extension
 capability. It was implemented to allow experimentation with
 object-oriented programming on small computers. There are
 currently implementations running on the the VAX under VAX/VMS,
 on the 8088/8086 under MS-DOS, on the 68000 under CP/M-68K, on
 the Macintosh, on the Atari 520ST and on the Amiga. It is
 completely written in the programming language 'C' and is easily
 extended with user written built-in functions and classes. It
 is available in source form free of charge to non-commercial
 users.

 Many traditional LISP functions are built into XLISP. In
 addition, XLISP defines the objects 'Object' and 'Class' as
 primitives. 'Object' is the only class that has no superclass
 and hence is the root of the class heirarchy tree. 'Class' is
 the class of which all classes are instances (it is the only
 object that is an instance of itself).

 This document is a brief description of XLISP. It assumes some
 knowledge of LISP and some understanding of the concepts of
 object-oriented programming.

 A recommended text for learning LISP programming is the book
 "LISP" by Winston and Horn and published by Addison Wesley. The
 first edition of this book is based on MacLisp and the second
 edition is based on Common Lisp. Future versions of XLISP will
 continue to migrate towards compatibility with Common Lisp.

 If you have any problems with XLISP, feel free to contact me for
 help or advice. Please remember that since XLISP is available
 in source form in a high level language, many users have been
 making versions available on a variety of machines. If you call
 to report a problem with a specific version, I may not be able
 to help you if that version runs on a machine to which I don't
 have access. Please have the version number of the version that
 you are running readily accessible before calling me.

 If you find a bug in XLISP, first try to fix the bug yourself
 using the source code provided. If you are successful in fixing
 the bug, send the bug report along with the fix to me. If you
 don't have access to a C compiler or are unable to fix a bug,
 please send the bug report to me and I'll try to fix it.

 Any suggestions for improvements will be welcomed. Feel free to
 extend the language in whatever way suits your needs. However,
 PLEASE DO NOT RELEASE ENHANCED VERSIONS WITHOUT CHECKING WITH ME
 FIRST!! I would like to be the clearing house for new features
 added to XLISP. If you want to add features for your own
 personal use, go ahead. But, if you want to distribute your
 enhanced version, contact me first. Please remember that the
 goal of XLISP is to provide a language to learn and experiment
 with LISP and object-oriented programming on small computers. I
 don't want it to get so big that it requires megabytes of memory
 to run.

 XLISP XLISP COMMAND LOOP Page 6

 XLISP COMMAND LOOP

 When XLISP is started, it first tries to load "init.lsp" from
 the default directory. It then loads any files named as
 parameters on the command line (after appending ".lsp" to their
 names). It then issues the following prompt:

 >

 This indicates that XLISP is waiting for an expression to be
 typed. When an incomplete expression has been typed (one where
 the left and right parens don't match) XLISP changes its prompt
 to:

 n>

 where n is an integer indicating how many levels of left parens
 remain unclosed.

 When a complete expression has been entered, XLISP attempts to
 evaluate that expression. If the expression evaluates
 successfully, XLISP prints the result of the evaluation and then
 returns to the initial prompt waiting for another expression to
 be typed.

 XLISP BREAK COMMAND LOOP Page 7

 BREAK COMMAND LOOP

 When XLISP encounters an error while evaluating an expression,
 it attempts to handle the error in the following way:

 If the symbol '*breakenable*' is true, the message corresponding
 to the error is printed. If the error is correctable, the
 correction message is printed. If the symbol '*tracenable*' is
 true, a trace back is printed. The number of entries printed
 depends on the value of the symbol '*tracelimit*'. If this
 symbol is set to something other than a number, the entire trace
 back stack is printed. XLISP then enters a read/eval/print loop
 to allow the user to examine the state of the interpreter in the
 context of the error. This loop differs from the normal top-
 level read/eval/print loop in that if the user invokes the
 function 'continue', XLISP will continue from a correctable
 error. If the user invokes the function 'clean-up', XLISP will
 abort the break loop and return to the top level or the next
 lower numbered break loop. When in a break loop, XLISP prefixes
 the break level to the normal prompt.

 If the symbol '*breakenable*' is nil, XLISP looks for a
 surrounding errset function. If one is found, XLISP examines
 the value of the print flag. If this flag is true, the error
 message is printed. In any case, XLISP causes the errset
 function call to return nil.

 If there is no surrounding errset function, XLISP prints the
 error message and returns to the top level.

 XLISP DATA TYPES Page 8

 DATA TYPES

 There are several different data types available to XLISP
 programmers.

 o lists
 o symbols
 o strings
 o integers
 o floats
 o objects
 o arrays
 o file pointers
 o subrs (built-in functions)
 o fsubrs (special forms)

 Another data type is the stream. A stream is a list node whose
 car points to the head of a list of integers and whose cdr
 points to the last list node of the list. An empty stream is a
 list node whose car and cdr are nil. Each of the integers in
 the list represents a character in the stream. When a character
 is read from a stream, the first integer from the head of the
 list is removed and returned. When a character is written to a
 stream, the integer representing the character code of the
 character is appended to the end of the list. When a function
 indicates that it takes an input source as a parameter, this
 parameter can either be an input file pointer or a stream.
 Similarly, when a function indicates that it takes an output
 sink as a parameter, this parameter can either be an output file
 pointer or a stream.

 XLISP THE EVALUATOR Page 9

 THE EVALUATOR

 The process of evaluation in XLISP:

 Integers, floats, strings, file pointers, subrs, fsubrs, objects
 and arrays evaluate to themselves

 Symbols evaluate to the value associated with their current
 binding

 Lists are evaluated by evaluating the first element of the list
 and then taking one of the following actions:

 If it is a subr, the remaining list elements are evaluated
 and the subr is called with these evaluated expressions as
 arguments.

 If it is an fsubr, the fsubr is called using the remaining
 list elements as arguments (unevaluated)

 If it is a list:

 If the list is a function closure (a list whose car is a
 lambda expression and whose cdr is an environment list),
 the car of the list is used as the function to be
 applied and the cdr is used as the environment to be
 extended with the parameter bindings.

 If the list is a lambda expression, the current
 environment is used for the function application.

 In either of the above two cases, the remaining list
 elements are evaluated and the resulting expressions
 are bound to the formal arguments of the lambda
 expression. The body of the function is executed
 within this new binding environment.

 If it is a list and the car of the list is 'macro', the
 remaining list elements are bound to the formal
 arguments of the macro expression. The body of the
 function is executed within this new binding
 environment. The result of this evaluation is
 considered the macro expansion. This result is then
 evaluated in place of the original expression.

 If it is an object, the second list element is evaluated
 and used as a message selector. The message formed by
 combining the selector with the values of the remaining
 list elements is sent to the object.

 XLISP LEXICAL CONVENTIONS Page 10

 LEXICAL CONVENTIONS

 The following conventions must be followed when entering XLISP
 programs:

 Comments in XLISP code begin with a semi-colon character and
 continue to the end of the line.

 Symbol names in XLISP can consist of any sequence of non-blank
 printable characters except the following:

 () ' ` , " ;

 Uppercase and lowercase characters are not distinguished within
 symbol names. All lowercase characters are mapped to uppercase
 on input.

 Integer literals consist of a sequence of digits optionally
 beginning with a '+' or '-'. The range of values an integer can
 represent is limited by the size of a C 'long' on the machine on
 which XLISP is running.

 Floating point literals consist of a sequence of digits
 optionally beginning with a '+' or '-' and including an embedded
 decimal point. The range of values a floating point number can
 represent is limited by the size of a C 'float' ('double' on
 machines with 32 bit addresses) on the machine on which XLISP is
 running.

 Literal strings are sequences of characters surrounded by double
 quotes. Within quoted strings the '' character is used to allow
 non-printable characters to be included. The codes recognized
 are:

 \\ means the character '\'
 \n means newline
 \t means tab
 \r means return
 \f means form feed
 \nnn means the character whose octal code is nnn

 XLISP defines several useful read macros:

 '<expr> == (quote <expr>)
 #'<expr> == (function <expr>)

 #(<expr>...) == an array of the specified expressions
 #x<hdigits> == a hexadecimal number
 #\<char> == the ASCII code of the character
 `<expr> == (backquote <expr>)
 ,<expr> == (comma <expr>)
 ,@<expr> == (comma-at <expr>)

 XLISP READTABLES Page 11

 READTABLES

 The behaviour of the reader is controlled by a data structure
 called a "readtable". The reader uses the symbol *READTABLE* to
 locate the current readtable. This table controls the
 interpretation of input characters. It is an array with 128
 entries, one for each of the ASCII character codes. Each entry
 contains one of the following things:

 NIL Indicating an invalid character
 :CONSTITUENT Indicating a symbol constituent
 :WHITE-SPACE Indicating a whitespace character
 (:TMACRO . fun) Terminating readmacro
 (:NMACRO . fun) Non-terminating readmacro

 In the case of the last two forms, the "fun" component is a
 function definition. This can either be a pointer to a built-in
 readmacro function or a lambda expression. The function should
 take two parameters. The first is the input stream and the
 second is the character that caused the invocation of the
 readmacro. The character is passed as an integer. The
 readmacro function should return NIL to indicate that the
 character should be treated as white space or a value consed
 with NIL to indicate that the readmacro should be treated as an
 occurance of the specified value. Of course, the readmacro code
 is free to read additional characters from the input stream.

 XLISP OBJECTS Page 12

 OBJECTS

 Definitions:

 o selector - a symbol used to select an appropriate method
 o message - a selector and a list of actual arguments
 o method - the code that implements a message

 Since XLISP was created to provide a simple basis for
 experimenting with object-oriented programming, one of the
 primitive data types included is 'object'. In XLISP, an object
 consists of a data structure containing a pointer to the
 object's class as well as an array containing the values of the
 object's instance variables.

 Officially, there is no way to see inside an object (look at the
 values of its instance variables). The only way to communicate
 with an object is by sending it a message. When the XLISP
 evaluator evaluates a list the value of whose first element is
 an object, it interprets the value of the second element of the
 list (which must be a symbol) as the message selector. The
 evaluator determines the class of the receiving object and
 attempts to find a method corresponding to the message selector
 in the set of messages defined for that class. If the message
 is not found in the object's class and the class has a super-
 class, the search continues by looking at the messages defined
 for the super-class. This process continues from one super-
 class to the next until a method for the message is found. If
 no method is found, an error occurs.

 When a method is found, the evaluator binds the receiving object
 to the symbol 'self', binds the class in which the method was
 found to the symbol 'msgclass', and evaluates the method using
 the remaining elements of the original list as arguments to the
 method. These arguments are always evaluated prior to being
 bound to their corresponding formal arguments. The result of
 evaluating the method becomes the result of the expression.

 XLISP OBJECTS Page 13

 THE 'Object' CLASS

 Classes:

 Object THE TOP OF THE CLASS HEIRARCHY

 Messages:

 :show SHOW AN OBJECT'S INSTANCE VARIABLES
 returns the object

 :class RETURN THE CLASS OF AN OBJECT
 returns the class of the object

 :isnew THE DEFAULT OBJECT INITIALIZATION ROUTINE
 returns the object

 :sendsuper <sel> [<args>]... SEND SUPERCLASS A MESSAGE
 <sel> the message selector
 <args> the message arguments
 returns the result of sending the message

 XLISP OBJECTS Page 14

 THE 'Class' CLASS

 Class THE CLASS OF ALL OBJECT CLASSES (including itself)

 Messages:

 :new CREATE A NEW INSTANCE OF A CLASS
 returns the new class object

 :isnew <ivars> [<cvars>[<super>]] INITIALIZE A NEW CLASS
 <ivars> the list of instance variable symbols
 <cvars> the list of class variable symbols
 <super> the superclass (default is Object)
 returns the new class object

 :answer <msg> <fargs> <code> ADD A MESSAGE TO A CLASS
 <msg> the message symbol
 <fargs> the formal argument list
 this list is of the form:
 ([<farg>]...
 [&optional [<oarg>]...]
 [&rest <rarg>]
 [&aux [<aux>]...])
 where
 <farg> a formal argument
 <oarg> an optional argument
 <rarg> bound to rest of the arguments
 <aux> a auxiliary variable
 <code> a list of executable expressions
 returns the object

 When a new instance of a class is created by sending the message
 ':new' to an existing class, the message ':isnew' followed by
 whatever parameters were passed to the ':new' message is sent to
 the newly created object.

 When a new class is created by sending the ':new' message to the
 object 'Class', an optional parameter may be specified
 indicating the superclass of the new class. If this parameter
 is omitted, the new class will be a subclass of 'Object'. A
 class inherits all instance variables, class variables, and
 methods from its super-class.

 XLISP SYMBOLS Page 15

 SYMBOLS

 o self - the current object (within a message context)
 o msgclass - the class in which the current method was found
 o *obarray* - the object hash table
 o *standard-input* - the standard input file
 o *standard-output* - the standard output file
 o *breakenable* - flag controlling entering break loop on errors
 o *tracenable* - enable baktrace on errors
 o *tracelimit* - number of levels of trace back information
 o *evalhook* - user substitute for the evaluator function
 o *applyhook* - (not yet implemented)
 o *readtable* - the current readtable
 o *unbound* - indicator for unbound symbols
 o *gc-flag* - controls the printing of gc messages

 XLISP EVALUATION FUNCTIONS Page 16

 EVALUATION FUNCTIONS

 (eval <expr>) EVALUATE AN XLISP EXPRESSION
 <expr> the expression to be evaluated
 returns the result of evaluating the expression

 (apply <fun> <args>) APPLY A FUNCTION TO A LIST OF ARGUMENTS
 <fun> the function to apply (or function symbol)
 <args> the argument list
 returns the result of applying the function to the arguments

 (funcall <fun> [<arg>]...) CALL A FUNCTION WITH ARGUMENTS
 <fun> the function to call (or function symbol)
 <arg> arguments to pass to the function
 returns the result of calling the function with the arguments

 (quote <expr>) RETURN AN EXPRESSION UNEVALUATED
 <expr> the expression to be quoted (quoted)
 returns <expr> unevaluated

 (function <expr>) QUOTE A FUNCTION
 <expr> the function to be quoted (quoted)
 returns a function closure

 (backquote <expr>) FILL IN A TEMPLATE
 <expr> the template
 returns a copy of the template with comma and comma-at
 expressions expanded

 (lambda <args> [<expr>]...) MAKE A FUNCTION CLOSURE
 <args> the argument list (quoted)
 <expr> expressions of the function body
 returns the function closure

 XLISP SYMBOL FUNCTIONS Page 17

 SYMBOL FUNCTIONS

 (set <sym> <expr>) SET THE VALUE OF A SYMBOL
 <sym> the symbol being set
 <expr> the new value
 returns the new value

 (setq [<sym> <expr>]...) SET THE VALUE OF A SYMBOL
 <sym> the symbol being set (quoted)
 <expr> the new value
 returns the new value

 (setf [<place> <expr>]...) SET THE VALUE OF A FIELD
 <place> the field specifier (quoted):
 <sym> set value of a symbol
 (car <expr>) set car of a list node
 (cdr <expr>) set cdr of a list node
 (nth <n> <expr>) set nth car of a list
 (aref <expr> <n>) set nth element of an array
 (get <sym> <prop>) set value of a property
 (symbol-value <sym>) set value of a symbol
 (symbol-plist <sym>) set property list of a symbol
 <value> the new value
 returns the new value

 (defun <sym> <fargs> [<expr>]...) DEFINE A FUNCTION
 (defmacro <sym> <fargs> [<expr>]...) DEFINE A MACRO
 <sym> symbol being defined (quoted)
 <fargs> list of formal arguments (quoted)
 this list is of the form:
 ([<farg>]...
 [&optional [<oarg>]...]
 [&rest <rarg>]
 [&aux [<aux>]...])
 where
 <farg> is a formal argument
 <oarg> is an optional argument
 <rarg> bound to the rest of the arguments
 <aux> is an auxiliary variable
 <expr> expressions constituting the body of the
 function (quoted)
 returns the function symbol

 (gensym [<tag>]) GENERATE A SYMBOL
 <tag> string or number

 returns the new symbol

 (intern <pname>) MAKE AN INTERNED SYMBOL
 <pname> the symbol's print name string
 returns the new symbol

 (make-symbol <pname>) MAKE AN UNINTERNED SYMBOL
 <pname> the symbol's print name string
 returns the new symbol

 XLISP SYMBOL FUNCTIONS Page 18

 (symbol-name <sym>) GET THE PRINT NAME OF A SYMBOL
 <sym> the symbol
 returns the symbol's print name

 (symbol-value <sym>) GET THE VALUE OF A SYMBOL
 <sym> the symbol
 returns the symbol's value

 (symbol-plist <sym>) GET THE PROPERTY LIST OF A SYMBOL
 <sym> the symbol
 returns the symbol's property list

 (hash <sym> <n>) COMPUTE THE HASH INDEX FOR A SYMBOL
 <sym> the symbol or string
 <n> the table size (integer)
 returns the hash index (integer)

 XLISP PROPERTY LIST FUNCTIONS Page 19

 PROPERTY LIST FUNCTIONS

 (get <sym> <prop>) GET THE VALUE OF A PROPERTY
 <sym> the symbol
 <prop> the property symbol
 returns the property value or nil

 (putprop <sym> <val> <prop>) PUT A PROPERTY ONTO A PROPERTY LIST
 <sym> the symbol
 <val> the property value
 <prop> the property symbol
 returns the property value

 (remprop <sym> <prop>) REMOVE A PROPERTY
 <sym> the symbol
 <prop> the property symbol
 returns nil

 XLISP ARRAY FUNCTIONS Page 20

 ARRAY FUNCTIONS

 (aref <array> <n>) GET THE NTH ELEMENT OF AN ARRAY
 <array> the array
 <n> the array index (integer)
 returns the value of the array element

 (make-array <size>) MAKE A NEW ARRAY
 <size> the size of the new array (integer)
 returns the new array

 XLISP LIST FUNCTIONS Page 21

 LIST FUNCTIONS

 (car <expr>) RETURN THE CAR OF A LIST NODE
 <expr> the list node
 returns the car of the list node

 (cdr <expr>) RETURN THE CDR OF A LIST NODE
 <expr> the list node
 returns the cdr of the list node

 (cxxr <expr>) ALL CxxR COMBINATIONS
 (cxxxr <expr>) ALL CxxxR COMBINATIONS
 (cxxxxr <expr>) ALL CxxxxR COMBINATIONS

 (cons <expr1> <expr2>) CONSTRUCT A NEW LIST NODE
 <expr1> the car of the new list node
 <expr2> the cdr of the new list node
 returns the new list node

 (list [<expr>]...) CREATE A LIST OF VALUES
 <expr> expressions to be combined into a list
 returns the new list

 (append [<expr>]...) APPEND LISTS
 <expr> lists whose elements are to be appended
 returns the new list

 (reverse <expr>) REVERSE A LIST
 <expr> the list to reverse
 returns a new list in the reverse order

 (last <list>) RETURN THE LAST LIST NODE OF A LIST
 <list> the list
 returns the last list node in the list

 (member <expr> <list> [<key> <test>]) FIND AN EXPRESSION IN A LIST
 <expr> the expression to find
 <list> the list to search
 <key> the keyword :test or :test-not
 <test> the test function (defaults to eql)
 returns the remainder of the list starting with the expression

 (assoc <expr> <alist> [<key> <test>]) FIND AN EXPRESSION IN AN A-LIST
 <expr> the expression to find
 <alist> the association list

 <key> the keyword :test or :test-not
 <test> the test function (defaults to eql)
 returns the alist entry or nil

 XLISP LIST FUNCTIONS Page 22

 (remove <expr> <list> [<key> <test>]) REMOVE AN EXPRESSION
 <expr> the expression to delete
 <list> the list
 <key> the keyword :test or :test-not
 <test> the test function (defaults to eql)
 returns the list with the matching expressions deleted

 (length <expr>) FIND THE LENGTH OF A LIST OR STRING
 <expr> the list or string
 returns the length of the list or string

 (nth <n> <list>) RETURN THE NTH ELEMENT OF A LIST
 <n> the number of the element to return (zero origin)
 <list> the list
 returns the nth element or nil if the list isn't that long

 (nthcdr <n> <list>) RETURN THE NTH CDR OF A LIST
 <n> the number of the element to return (zero origin)
 <list> the list
 returns the nth cdr or nil if the list isn't that long

 (mapc <fcn> <list1> [<list>]...) APPLY FUNCTION TO SUCCESSIVE CARS
 <fcn> the function or function name
 <listn> a list for each argument of the function
 returns the first list of arguments

 (mapcar <fcn> <list1> [<list>]...) APPLY FUNCTION TO SUCCESSIVE CARS
 <fcn> the function or function name
 <listn> a list for each argument of the function
 returns a list of the values returned

 (mapl <fcn> <list1> [<list>]...) APPLY FUNCTION TO SUCCESSIVE CDRS
 <fcn> the function or function name
 <listn> a list for each argument of the function
 returns the first list of arguments

 (maplist <fcn> <list1> [<list>]...) APPLY FUNCTION TO SUCCESSIVE CDRS
 <fcn> the function or function name
 <listn> a list for each argument of the function
 returns a list of the values returned

 XLISP LIST FUNCTIONS Page 23

 (subst <to> <from> <expr> [<key> <test>]) SUBSTITUTE EXPRESSIONS
 <to> the new expression
 <from> the old expression
 <expr> the expression in which to do the substitutions
 <key> the keyword :test or :test-not
 <test> the test function (defaults to eql)
 returns the expression with substitutions

 (sublis <alist> <expr> [<key> <test>]) SUBSTITUTE WITH AN A-LIST
 <alist> the association list
 <expr> the expression in which to do the substitutions
 <key> the keyword :test or :test-not
 <test> the test function (defaults to eql)
 returns the expression with substitutions

 XLISP DESTRUCTIVE LIST FUNCTIONS Page 24

 DESTRUCTIVE LIST FUNCTIONS

 (rplaca <list> <expr>) REPLACE THE CAR OF A LIST NODE
 <list> the list node
 <expr> the new value for the car of the list node
 returns the list node after updating the car

 (rplacd <list> <expr>) REPLACE THE CDR OF A LIST NODE
 <list> the list node
 <expr> the new value for the cdr of the list node
 returns the list node after updating the cdr

 (nconc [<list>]...) DESTRUCTIVELY CONCATENATE LISTS
 <list> lists to concatenate
 returns the result of concatenating the lists

 (delete <expr> <list> [<key> <test>]) DELETE AN EXPRESSION FROM A LIST
 <expr> the expression to delete
 <list> the list
 <key> the keyword :test or :test-not
 <test> the test function (defaults to eql)
 returns the list with the matching expressions deleted

 XLISP PREDICATE FUNCTIONS Page 25

 PREDICATE FUNCTIONS

 (atom <expr>) IS THIS AN ATOM?
 <expr> the expression to check
 returns t if the value is an atom, nil otherwise

 (symbolp <expr>) IS THIS A SYMBOL?
 <expr> the expression to check
 returns t if the expression is a symbol, nil otherwise

 (numberp <expr>) IS THIS A NUMBER?
 <expr> the expression to check
 returns t if the expression is a number, nil otherwise

 (null <expr>) IS THIS AN EMPTY LIST?
 <expr> the list to check
 returns t if the list is empty, nil otherwise

 (not <expr>) IS THIS FALSE?
 <expr> the expression to check
 return t if the expression is nil, nil otherwise

 (listp <expr>) IS THIS A LIST?
 <expr> the expression to check
 returns t if the value is a list node or nil, nil otherwise

 (consp <expr>) IS THIS A NON-EMPTY LIST?
 <expr> the expression to check
 returns t if the value is a list node, nil otherwise

 (boundp <sym>) IS THIS A BOUND SYMBOL?
 <sym> the symbol
 returns t if a value is bound to the symbol, nil otherwise

 XLISP PREDICATE FUNCTIONS Page 26

 (minusp <expr>) IS THIS NUMBER NEGATIVE?
 <expr> the number to test
 returns t if the number is negative, nil otherwise

 (zerop <expr>) IS THIS NUMBER ZERO?
 <expr> the number to test
 returns t if the number is zero, nil otherwise

 (plusp <expr>) IS THIS NUMBER POSITIVE?
 <expr> the number to test
 returns t if the number is positive, nil otherwise

 (evenp <expr>) IS THIS NUMBER EVEN?
 <expr> the number to test
 returns t if the number is even, nil otherwise

 (oddp <expr>) IS THIS NUMBER ODD?
 <expr> the number to test
 returns t if the number is odd, nil otherwise

 (eq <expr1> <expr2>) ARE THE EXPRESSIONS IDENTICAL?
 <expr1> the first expression
 <expr2> the second expression
 returns t if they are equal, nil otherwise

 (eql <expr1> <expr2>) ARE THE EXPRESSIONS IDENTICAL?
 (WORKS WITH NUMBERS AND STRINGS)
 <expr1> the first expression
 <expr2> the second expression
 returns t if they are equal, nil otherwise

 (equal <expr1> <expr2>) ARE THE EXPRESSIONS EQUAL?
 <expr1> the first expression
 <expr2> the second expression
 returns t if they are equal, nil otherwise

 XLISP CONTROL CONSTRUCTS Page 27

 CONTROL CONSTRUCTS

 (cond [<pair>]...) EVALUATE CONDITIONALLY
 <pair> pair consisting of:
 (<pred> [<expr>]...)
 where
 <pred> is a predicate expression
 <expr> evaluated if the predicate
 is not nil
 returns the value of the first expression whose predicate
 is not nil

 (and [<expr>]...) THE LOGICAL AND OF A LIST OF EXPRESSIONS
 <expr> the expressions to be ANDed
 returns nil if any expression evaluates to nil,
 otherwise the value of the last expression
 (evaluation of expressions stops after the first
 expression that evaluates to nil)

 (or [<expr>]...) THE LOGICAL OR OF A LIST OF EXPRESSIONS
 <expr> the expressions to be ORed
 returns nil if all expressions evaluate to nil,
 otherwise the value of the first non-nil expression
 (evaluation of expressions stops after the first
 expression that does not evaluate to nil)

 (if <texpr> <expr1> [<expr2>]) EXECUTE EXPRESSIONS CONDITIONALLY
 <texpr> the test expression
 <expr1> the expression to be evaluated if texpr is non-nil
 <expr2> the expression to be evaluated if texpr is nil
 returns the value of the selected expression

 (case <expr> [<case>]...) SELECT BY CASE
 <expr> the selection expression
 <case> pair consisting of:
 (<value> [<expr>]...)
 where:
 <value> is a single expression or a list of
 expressions (unevaluated)
 <expr> are expressions to execute if the
 case matches
 returns the value of the last expression of the matching case

 (let ([<binding>]...) [<expr>]...) CREATE LOCAL BINDINGS
 (let* ([<binding>]...) [<expr>]...) LET WITH SEQUENTIAL BINDING

 <binding> the variable bindings each of which is either:
 1) a symbol (which is initialized to nil)
 2) a list whose car is a symbol and whose cadr
 is an initialization expression
 <expr> the expressions to be evaluated
 returns the value of the last expression

 (catch <sym> [<expr>]...) EVALUATE EXPRESSIONS AND CATCH THROWS
 <sym> the catch tag

 XLISP CONTROL CONSTRUCTS Page 28

 <expr> expressions to evaluate
 returns the value of the last expression the throw expression

 (throw <sym> [<expr>]) THROW TO A CATCH
 <sym> the catch tag
 <expr> the value for the catch to return (defaults to nil)
 returns never returns

 XLISP LOOPING CONSTRUCTS Page 29

 LOOPING CONSTRUCTS

 (do ([<binding>]...) (<texpr> [<rexpr>]...) [<expr>]...)
 (do* ([<binding>]...) (<texpr> [<rexpr>]...) [<expr>]...)
 <binding> the variable bindings each of which is either:
 1) a symbol (which is initialized to nil)
 2) a list of the form: (<sym> <init> [<step>])
 where:
 <sym> is the symbol to bind
 <init> is the initial value of the symbol
 <step> is a step expression
 <texpr> the termination test expression
 <rexpr> result expressions (the default is nil)
 <expr> the body of the loop (treated like an implicit prog)
 returns the value of the last result expression

 (dolist (<sym> <expr> [<rexpr>]) [<expr>]...) LOOP THROUGH A LIST
 <sym> the symbol to bind to each list element
 <expr> the list expression
 <rexpr> the result expression (the default is nil)
 <expr> the body of the loop (treated like an implicit prog)

 (dotimes (<sym> <expr> [<rexpr>]) [<expr>]...) LOOP FROM ZERO TO N-1
 <sym> the symbol to bind to each value from 0 to n-1
 <expr> the number of times to loop
 <rexpr> the result expression (the default is nil)
 <expr> the body of the loop (treated like an implicit prog)

 XLISP THE PROGRAM FEATURE Page 30

 THE PROGRAM FEATURE

 (prog ([<binding>]...) [<expr>]...) THE PROGRAM FEATURE
 (prog* ([<binding>]...) [<expr>]...) PROG WITH SEQUENTIAL BINDING
 <binding> the variable bindings each of which is either:
 1) a symbol (which is initialized to nil)
 2) a list whose car is a symbol and whose cadr
 is an initialization expression
 <expr> expressions to evaluate or tags (symbols)
 returns nil or the argument passed to the return function

 (go <sym>) GO TO A TAG WITHIN A PROG CONSTRUCT
 <sym> the tag (quoted)
 returns never returns

 (return [<expr>]) CAUSE A PROG CONSTRUCT TO RETURN A VALUE
 <expr> the value (defaults to nil)
 returns never returns

 (prog1 <expr1> [<expr>]...) EXECUTE EXPRESSIONS SEQUENTIALLY
 <expr1> the first expression to evaluate
 <expr> the remaining expressions to evaluate
 returns the value of the first expression

 (prog2 <expr1> <expr2> [<expr>]...) EXECUTE EXPRESSIONS SEQUENTIALLY
 <expr1> the first expression to evaluate
 <expr2> the second expression to evaluate
 <expr> the remaining expressions to evaluate
 returns the value of the second expression

 (progn [<expr>]...) EXECUTE EXPRESSIONS SEQUENTIALLY
 <expr> the expressions to evaluate
 returns the value of the last expression (or nil)

 XLISP DEBUGGING AND ERROR HANDLING Page 31

 DEBUGGING AND ERROR HANDLING

 (error <emsg> [<arg>]) SIGNAL A NON-CORRECTABLE ERROR
 <emsg> the error message string
 <arg> the argument expression (printed after the message)
 returns never returns

 (cerror <cmsg> <emsg> [<arg>]) SIGNAL A CORRECTABLE ERROR
 <cmsg> the continue message string
 <emsg> the error message string
 <arg> the argument expression (printed after the message)
 returns nil when continued from the break loop

 (break [<bmsg> [<arg>]]) ENTER A BREAK LOOP
 <bmsg> the break message string (defaults to "**BREAK**")
 <arg> the argument expression (printed after the message)
 returns nil when continued from the break loop

 (clean-up) CLEAN-UP AFTER AN ERROR
 returns never returns

 (continue) CONTINUE FROM A CORRECTABLE ERROR
 returns never returns

 (errset <expr> [<pflag>]) TRAP ERRORS
 <expr> the expression to execute
 <pflag> flag to control printing of the error message
 returns the value of the last expression consed with nil
 or nil on error

 (baktrace [<n>]) PRINT N LEVELS OF TRACE BACK INFORMATION
 <n> the number of levels (defaults to all levels)
 returns nil

 (evalhook <expr> <ehook> <ahook> [<env>]) EVALUATE WITH HOOKS
 <expr> the expression to evaluate
 <ehook> the value for *evalhook*
 <ahook> the value for *applyhook*
 <env> the environment (default is nil)
 returns the result of evaluating the expression

 XLISP ARITHMETIC FUNCTIONS Page 32

 ARITHMETIC FUNCTIONS

 (truncate <expr>) TRUNCATES A FLOATING POINT NUMBER TO AN INTEGER
 <expr> the number
 returns the result of truncating the number

 (float <expr>) CONVERTS AN INTEGER TO A FLOATING POINT NUMBER
 <expr> the number
 returns the result of floating the integer

 (+ <expr>...) ADD A LIST OF NUMBERS
 <expr> the numbers
 returns the result of the addition

 (- <expr>...) SUBTRACT A LIST OF NUMBERS OR NEGATE A SINGLE NUMBER
 <expr> the numbers
 returns the result of the subtraction

 (* <expr>...) MULTIPLY A LIST OF NUMBERS
 <expr> the numbers
 returns the result of the multiplication

 (/ <expr>...) DIVIDE A LIST OF NUMBERS
 <expr> the numbers
 returns the result of the division

 (1+ <expr>) ADD ONE TO A NUMBER
 <expr> the number
 returns the number plus one

 (1- <expr>) SUBTRACT ONE FROM A NUMBER
 <expr> the number
 returns the number minus one

 (rem <expr>...) REMAINDER OF A LIST OF NUMBERS
 <expr> the numbers
 returns the result of the remainder operation

 (min <expr>...) THE SMALLEST OF A LIST OF NUMBERS
 <expr> the expressions to be checked
 returns the smallest number in the list

 (max <expr>...) THE LARGEST OF A LIST OF NUMBERS
 <expr> the expressions to be checked
 returns the largest number in the list

 (abs <expr>) THE ABSOLUTE VALUE OF A NUMBER
 <expr> the number
 returns the absolute value of the number

 (random <n>) COMPUTE A RANDOM NUMBER BETWEEN 1 and N-1
 <n> the upper bound (integer)
 returns a random number

 XLISP ARITHMETIC FUNCTIONS Page 33

 (sin <expr>) COMPUTE THE SINE OF A NUMBER
 <expr> the floating point number
 returns the sine of the number

 (cos <expr>) COMPUTE THE COSINE OF A NUMBER
 <expr> the floating point number
 returns the cosine of the number

 (tan <expr>) COMPUTE THE TANGENT OF A NUMBER
 <expr> the floating point number
 returns the tangent of the number

 (expt <x-expr> <y-expr>) COMPUTE X TO THE Y POWER
 <x-expr> the floating point number
 <y-expr> the floating point exponent
 returns x to the y power

 (exp <x-expr>) COMPUTE E TO THE X POWER
 <x-expr> the floating point number
 returns e to the x power

 (sqrt <expr>) COMPUTE THE SQUARE ROOT OF A NUMBER
 <expr> the floating point number
 returns the square root of the number

 XLISP BITWISE LOGICAL FUNCTIONS Page 34

 BITWISE LOGICAL FUNCTIONS

 (log-and <expr>...) THE BITWISE AND OF A LIST OF NUMBERS
 <expr> the numbers
 returns the result of the and operation

 (log-ior <expr>...) THE BITWISE INCLUSIVE OR OF A LIST OF NUMBERS
 <expr> the numbers
 returns the result of the inclusive or operation

 (log-xor <expr>...) THE BITWISE EXCLUSIVE OR OF A LIST OF NUMBERS
 <expr> the numbers
 returns the result of the exclusive or operation

 (log-not <expr>) THE BITWISE NOT OF A NUMBER
 <expr> the number
 returns the bitwise inversion of number

 XLISP RELATIONAL FUNCTIONS Page 35

 RELATIONAL FUNCTIONS

 The relational functions can be used to compare integers,
 floating point numbers or strings.

 (< <e1> <e2>) TEST FOR LESS THAN
 <e1> the left operand of the comparison
 <e2> the right operand of the comparison
 returns the result of comparing <e1> with <e2>

 (<= <e1> <e2>) TEST FOR LESS THAN OR EQUAL TO
 <e1> the left operand of the comparison
 <e2> the right operand of the comparison
 returns the result of comparing <e1> with <e2>

 (= <e1> <e2>) TEST FOR EQUAL TO
 <e1> the left operand of the comparison
 <e2> the right operand of the comparison
 returns the result of comparing <e1> with <e2>

 (/= <e1> <e2>) TEST FOR NOT EQUAL TO
 <e1> the left operand of the comparison
 <e2> the right operand of the comparison
 returns the result of comparing <e1> with <e2>

 (>= <e1> <e2>) TEST FOR GREATER THAN OR EQUAL TO
 <e1> the left operand of the comparison
 <e2> the right operand of the comparison
 returns the result of comparing <e1> with <e2>

 (> <e1> <e2>) TEST FOR GREATER THAN
 <e1> the left operand of the comparison
 <e2> the right operand of the comparison
 returns the result of comparing <e1> with <e2>

 XLISP STRING FUNCTIONS Page 36

 STRING FUNCTIONS

 (char <string> <index>) EXTRACT A CHARACTER FROM A STRING
 <string> the string
 <index> the string index (zero relative)
 returns the ascii code of the character

 (string <expr>) MAKE A STRING FROM AN INTEGER ASCII VALUE
 <expr> the integer
 returns a one character string

 (strcat [<expr>]...) CONCATENATE STRINGS
 <expr> the strings to concatenate
 returns the result of concatenating the strings

 (substr <expr> <sexpr> [<lexpr>]) EXTRACT A SUBSTRING
 <expr> the string
 <sexpr> the starting position
 <lexpr> the length (default is rest of string)
 returns substring starting at <sexpr> for <lexpr>

 XLISP INPUT/OUTPUT FUNCTIONS Page 37

 INPUT/OUTPUT FUNCTIONS

 (read [<source> [<eof> [<rflag>]]]) READ AN XLISP EXPRESSION
 <source> the input source (default is standard input)
 <eof> the value to return on end of file (default is nil)
 <rflag> recursive read flag (default is nil)
 returns the expression read

 (print <expr> [<sink>]) PRINT A LIST OF VALUES ON A NEW LINE
 <expr> the expressions to be printed
 <sink> the output sink (default is standard output)
 returns the expression

 (prin1 <expr> [<sink>]) PRINT A LIST OF VALUES
 <expr> the expressions to be printed
 <sink> the output sink (default is standard output)
 returns the expression

 (princ <expr> [<sink>]) PRINT A LIST OF VALUES WITHOUT QUOTING
 <expr> the expressions to be printed
 <sink> the output sink (default is standard output)
 returns the expression

 (terpri [<sink>]) TERMINATE THE CURRENT PRINT LINE
 <sink> the output sink (default is standard output)
 returns nil

 (flatsize <expr>) LENGTH OF PRINTED REPRESENTATION USING PRIN1
 <expr> the expression
 returns the length

 (flatc <expr>) LENGTH OF PRINTED REPRESENTATION USING PRINC
 <expr> the expression
 returns the length

 XLISP FILE I/O FUNCTIONS Page 38

 FILE I/O FUNCTIONS

 (openi <fname>) OPEN AN INPUT FILE
 <fname> the file name string or symbol
 returns a file pointer

 (openo <fname>) OPEN AN OUTPUT FILE
 <fname> the file name string or symbol
 returns a file pointer

 (close <fp>) CLOSE A FILE
 <fp> the file pointer
 returns nil

 (read-char [<source>]) READ A CHARACTER FROM A FILE OR STREAM
 <source> the input source (default is standard input)
 returns the character (integer)

 (peek-char [<flag> [<source>]]) PEEK AT THE NEXT CHARACTER
 <flag> flag for skipping white space (default is nil)
 <source> the input source (default is standard input)
 returns the character (integer)

 (write-char <ch> [<sink>]) WRITE A CHARACTER TO A FILE OR STREAM
 <ch> the character to put (integer)
 <sink> the output sink (default is standard output)
 returns the character (integer)

 (read-line [<source>]) READ A LINE FROM A FILE OR STREAM
 <source> the input source (default is standard input)
 returns the input string

 XLISP SYSTEM FUNCTIONS Page 39

 SYSTEM FUNCTIONS

 (load <fname> [<vflag> [<pflag>]]) LOAD AN XLISP SOURCE FILE
 <fname> the filename string or symbol
 <vflag> the verbose flag (default is t)
 <pflag> the print flag (default is nil)
 returns the filename

 (transcript [<fname>]) CREATE A FILE WITH A TRANSCRIPT OF A SESSION
 <fname> file name string or symbol
 (if missing, close current transcript)
 returns t if the transcript is opened, nil if it is closed

 (gc) FORCE GARBAGE COLLECTION
 returns nil

 (expand <num>) EXPAND MEMORY BY ADDING SEGMENTS
 <num> the number of segments to add
 returns the number of segments added

 (alloc <num>) CHANGE NUMBER OF NODES TO ALLOCATE IN EACH SEGMENT
 <num> the number of nodes to allocate
 returns the old number of nodes to allocate

 (mem) SHOW MEMORY ALLOCATION STATISTICS
 returns nil

 (type-of <expr>) RETURNS THE TYPE OF THE EXPRESSION
 <expr> the expression to return the type of
 returns nil if the value is nil otherwise one of the symbols:
 :SYMBOL for symbols
 :OBJECT for objects
 :CONS for conses
 :SUBR for built-ins with evaluated arguments
 :FSUBR for built-ins with unevaluated arguments
 :STRING for strings
 :FIXNUM for integers
 :FLONUM for floating point numbers
 :FILE for file pointers
 :ARRAY for arrays

 (peek <addrs>) PEEK AT A LOCATION IN MEMORY
 <addrs> the address to peek at (integer)
 returns the value at the specified address (integer)

 (poke <addrs> <value>) POKE A VALUE INTO MEMORY
 <addrs> the address to poke (integer)
 <value> the value to poke into the address (integer)
 returns the value

 (address-of <expr>) GET THE ADDRESS OF AN XLISP NODE
 <expr> the node
 returns the address of the node (integer)

 XLISP SYSTEM FUNCTIONS Page 40

 (exit) EXIT XLISP
 returns never returns

